Available online 29 June 2022
Abstract
It is practically difficult to find titanium sponges with low and stable aluminum impurities on the market even though it is the precondition to prepare high-purity titanium. Analysis indicates that almost all the aluminum impurities in the titanium sponge are inherited from the magnesium used to reduce titanium tetrachloride. However, it remains elusive for decades why magnesium produced through the silicothermic reduction method contains a high content of aluminum impurities with large fluctuations. By recourse to thermodynamic calculations and comparative experiments, we demonstrate that fluorite, a material used as a catalyst in the silicothermic reduction method to produce magnesium, is the chief culprit for the pest aluminum and propose a mechanism to rationalize the observed phenomena. Our findings indicate that one practical way to produce qualified magnesium for the production of high-purity titanium is to abandon fluorite during the production of magnesium with the silicothermic reduction method.
Keywords